Spectral Integral Suite in C++
Ex_09.cpp File Reference

Finds eigenvalues for streamwise-constant linearized Navier-Stokes equations, in two ways: More...

Detailed Description

Finds eigenvalues for streamwise-constant linearized Navier-Stokes equations, in two ways:

  1. By solving for the generalized eigenvalue problem:

    \[ \left[ \begin{array}{cc} \Delta & 0\\ 0 & I \end{array} \right]\partial_t \left[ \begin{array}{c} v\\ \eta \end{array} \right]\;=\;\left[ \begin{array}{cc} \frac{1}{Re}\Delta^2 & 0\\ -i\,k_z\,U' & \frac{1}{Re}\Delta \end{array} \right]\left[ \begin{array}{c} v \\ \eta \end{array} \right] \]

    with boundary conditions \(v(\pm 1) \;=\; v'(\pm 1) \;=\; \eta(\pm 1) \;=\; 0\)
  2. By solving the generalized eigenvalue problem:

    \[ \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \right]\partial_t \left[ \begin{array}{c} u \\ v \\ w \\ p \end{array} \right] \;= \; \left[ \begin{array}{cccc} \frac{1}{Re}\Delta & -U' & 0 & 0 \\ 0 & \frac{1}{Re}\Delta & 0 & -\partial_y \\ 0 & 0 & \frac{1}{Re}\Delta & -ik_z \\ 0 & \partial_y & ik_z & 0 \\ \end{array} \right]\left[ \begin{array}{c} u \\ v \\ w \\ p \end{array} \right] \]

    with boundary conditions \(u(\pm 1,t) \;=\; v(\pm 1,t) \;=\; w(\pm 1,t) \;=\; [\mathrm Dv(\cdot,t)](\pm 1) \;=\; 0\)

Note from the above form that the eigenvalues are simply the eigenvalues of \( \Delta^2/Re\) and \(\Delta/Re\), both of whom are real. Method 2 approximates the solution more accrately than method 1, as imaginary parts in method 2 are zero to machine precision. Here, \( \mathrm D = \mathrm d/\mathrm d y \).

Definition in file Ex_09.cpp.

Include dependency graph for Ex_09.cpp:

Go to the source code of this file.

Macros

#define SIS_USE_LAPACK
 

Functions

int main ()
 

Macro Definition Documentation

◆ SIS_USE_LAPACK

#define SIS_USE_LAPACK

Definition at line 70 of file Ex_09.cpp.

Function Documentation

◆ main()